The Journey to Sustainable Growth: DuPont's Energy and Greenhouse Gas Reduction Goals

Department of Energy Conference 2001

Ed Mongan

Manager of Environmental Stewardship

DuPont

- Food and Nutrition
- Health Care
- Agriculture
- Apparel
- Construction
- Electronics
- Transportation

Corporate Environmentalism

"Moving beyond compliance to environmental stewardship that is fully in line with public expectations"

Ed Woolard - 1989

Sustainable Growth

"Creating shareholder and societal value while decreasing our environmental footprint" along the value chain

Chad Holliday - 1999

The Journey

Business Integration

Progress

(Millions of Pounds Reduced Globally)

		<u>1990</u>	2000(est.)	
•	Air Carcinogens	9.1	1.1	▼ 88%
•	Priority Air	68.0	18.0	▼ 74%
•	Greenhouse Gases (MM mtCE)	24.6	10.2	▼ 59%
•	Deepwell Disposal	166	30	▼ 82%
•	TRI Releases	225	55	▼ 75%
•	TRI As Generated	890	550	↓ 38%
•	Hazardous Waste	2750	1650	↓ 40%

The Goal is Zero

Transformation

Today Future

Volume Driven Value Driven

Energy & Resource Intensive Knowledge Intensive

Inherently Hazardous/Toxic Inherently Safe

Linear Systems Circular Systems

Chemistry & Physics Biology & Information

Internal Out External In

DuPont and Climate Change

- Shaped by active participation in global scientific effort (IPCC)
 - Involvement began with ozone depletion
- Concluded in 1991 that there is cause for concern
 - Analyzed DuPont emissions profile
 - Established goals for 1990's to:
 - Reduce global GHG emissions 50%
 - Increase energy efficiency by 15%

New Goals

Base year: 1990

Goal Year: 2010

- Reduce global CO2 equivalent greenhouse gas emissions by 65%
- Hold energy flat
- Source 10% of global energy use from renewable resources.

Reduce Greenhouse Gas Emissions by 65%

- Use Kyoto basket of gases for scorecard CO2, N2O, HFCs, PFCs, CH4, SF6
- Milestones:

Year	% Reduction		
1997	16		
2000	59		
2010	65		

- Key reductions:
 - N2O at Maitland and Wilton in 1998-99 period HFC-23 at Shimizu and Louisville in 2000
- Need accurate reporting of projects, reductions, increases

DuPont Kyoto Greenhouse Gas Reductions 1990 - 2010

Hold Energy Flat

- Global energy flat 1988 1997 while production increased 36%.
- Energy productivity gains arise from
 - Product changes
 - Yield and plant utilization gains
 - Energy efficiency projects
 - Powerhouse modernizations
- Tracked with Corporate Environmental Plan and Engineering Energy Survey

DuPont Global Energy Relative to 1990

Energy and Emissions Inventories

- Total Energy Corporate Environmental Plan
 - Electricity and steam purchased
 - Types and amounts of fuels burned on-site
 - Convert to BTU's
- CO2 from on-site energy based on fuels purchased
- CO2 from process Production volume and mass balance
- CO2 from off-site energy Electricity and steam purchased
- HFC 23 Production volume and engineering estimates
- Nitrous oxide production volume and engineering estimates

10% Renewable Energy

- Target wind, biomass and solar
- Geothermal and tidal too small and too location specific
- Exclude nuclear
- Exclude hydropower (in U.S. at max capacity)
- Assume no net energy increase
- DuPont renewable demand in 2010 will require about 300 megawatts capacity
- 2000 technology for 300 MW new wind power:
 - \$300 MM installed generating capacity
 - \$30-60 MM/yr cost penalty. Opportunities for cost reduction.
 - 17% of present U.S. capacity and 4% of present world capacity.

The Interlocking Values of Sustainable Growth

